Development of a Blocking ELISA Based on a Monoclonal Antibody against a Predominant Epitope in Non-Structural Protein 3B2 of Foot-and-Mouth Disease Virus for Differentiating Infected from Vaccinated Animals
نویسندگان
چکیده
A monoclonal antibody (McAb) against non-structural protein (NSP) 3B of foot-mouth-disease virus (FMDV) (3B4B1) was generated and shown to recognize a conserved epitope spanning amino acids 24-32 of 3B (GPYAGPMER) by peptide screening ELISA. This epitope was further shown to be a unique and predominant B cell epitope in 3B2, as sera from animals infected with different serotypes of FMDV blocked the ability of McAb 3B4B1 to bind to NSP 2C3AB. Also, a polyclonal antibody against NSP 2C was produced in a rabbit vaccinated with 2C epitope regions expressed in E. coli. Using McAb 3B4B1 and the 2C polyclonal antibody, a solid-phase blocking ELISA (SPB-ELISA) was developed for the detection of antibodies against NSP 2C3AB to distinguish FMDV-infected from vaccinated animals (DIVA test). The parameters for this SPB-ELISA were established by screening panels of sera of different origins. Serum samples with a percent inhibition (PI) greater than or equal to 46% were considered to be from infected animals, and a PI lower than 46% was considered to indicate a non-infected animal. This test showed a similar performance as the commercially available PrioCHECK NS ELISA. This is the first description of the conserved and predominant GPYAGPMER epitope of 3B and also the first report of a DIVA test for FMDV NSP 3B based on a McAb against this epitope.
منابع مشابه
Development of a Blocking ELISA Using a Monoclonal Antibody to a Dominant Epitope in Non-Structural Protein 3A of Foot-and-Mouth Disease Virus, as a Matching Test for a Negative-Marker Vaccine
Foot-and-mouth disease (FMD) is a devastating animal disease. Strategies for differentiation of infected from vaccinated animals (DIVA) remain very important for controlling disease. Development of an epitope-deleted marker vaccine and accompanying diagnostic method will improve the efficiency of DIVA. Here, a monoclonal antibody (Mab) was found to recognize a conserved "AEKNPLE" epitope spanni...
متن کاملApplying conserved peptides of NS1 Protein of avian influenza virus to differentiate infected from vaccinated chickens
Avian influenza (AI) is a highly contagious disease in poultry and outbreaks can have dramatic economic and health implications. For effective disease surveillance, rapid and sensitive assays are needed to detect antibodies against AI virus (AIV) proteins. In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of “DIVA” vaccination strategies, ...
متن کاملDevelopment of an Indirect Enzyme-linked Immunosorbent Assay to Detect Antibodies against Serotype A2013 of Foot and Mouth Disease Virus in Cattle
Foot and mouth disease (FMD) is a contagious animal disease that causes irreparable damage to the economy of countries, including Iran in which this disease is a native one. Among the ways to combat FMD are vaccination and slaughter. Due to the specific situation of Iran, it is not possible to kill infected animals. Therefore, vaccination is the most important way to fight this disease. S...
متن کاملProduction of Monoclonal Antibody against Prokaryotically Expressed G1 Protein of Bovine Ephemeral Fever Virus
Epitope-G1 of bovine ephemeral fever virus (BEFV) G glycoprotein has been genetically and antigenically conserved among various isolates of BEFV and only reacts with anti-BEFV neutralising antibodies. Therefore, it is a candidate antigen for development of the enzyme linked immunosorbent assay (ELISA) for serological identification bovine ephemeral fever (BEF)-infected animals. The aim of this ...
متن کاملExpression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)
Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014